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Numerous experimental investigations reported in the open literature over the past decade have clearly
demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both
the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to
defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration,
excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the
observed high-performance of polyurea is closely related to its highly complex submicron scale phase-
segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy
dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic
survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics
computational analyses and the corresponding design-optimization methods has become ever apparent. A
critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically
based, high-fidelity material model for polyurea. There are presently several public domain and highly
diverse material models for polyurea. In the present work, an attempt is made to critically assess these
models as well as the experimental methods and results used in the process of their formulation. Since these
models are developed for use in the high-rate loading regime, they are employed in the present work, to
generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their
experimental counterparts in order to assess the fidelity of these models.
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1. Introduction

Polyurea is a microphase-segregated and thermo-plastically
linked elastomeric copolymer (the terms ‘‘microphase-segre-
gated’’ and ‘‘thermoplastically linked’’ will be explained later)
that is formed by the rapid chemical reaction between an
isocyanate (an organic chemical containing isocyanate
–N=C=O group) and an amine (organic chemical containing
amine –NH2 group). A schematic of the polyurea copolymer-
ization reaction is shown in Fig. 1, in which symbol R is used
to represent an aromatic functional group (e.g., di-phenyl
methane), while R¢ is used to denote an aromatic/aliphatic long
chain functional group (e.g., polytetramethyleneoxide-di-
phenyl). Since the copolymerization/gel reaction times are
typically less than a minute, polyurea synthesis can be achieved
under a wide range of temperatures and humidity without
significantly affecting material microstructure and properties.

As seen in Fig. 1, the copolymerization reaction creates urea
linkages which are highly polar, i.e., contain centers/poles of
negative and positive charge. Also shown in Fig. 1 is that urea
linkages together with the R functional groups form the
so-called ‘‘hard segments’’ within individual polyurea chains.
Within the same chains, R¢ functional groups form the so-called
‘‘soft segments.’’ As a result of strong hydrogen bonding
between urea linkages of the neighboring chains (or the
neighboring portions of the same chain), hard segments are
typically microphase segregated into the so-called ‘‘hard
domains.’’ An example of the formation of hard domains
within polyurea is shown in Fig. 2 using a tapping-mode
atomic force micrograph. As shown in this figure [high-glass
transition temperature (Tg) and crystallizable (Ref 1)] hard
domains are present as isolated rod-like entities within the
compliant/soft (i.e., low-glass transition temperature, Tg) matrix
composed of nonphase-segregated hard segments and soft
segments. In some cases, hard domains are interconnected
forming a contiguous network. Since hydrogen bonding within
hard domains provides interchain joining, polyureas are often
referred to as being thermo-plastically crosslinked (in contrast
to more commonly covalently crosslinked thermosetting)
polymers. Thus, hard domains within polyurea act both as
stiff/strong reinforcements and also as interchain links. Based
on the aforementioned molecular- and domain-level micro-
structures, polyurea is usually described as a microphase-
segregated and thermo-plastically crosslinked elastomer (or
nanoscale elastomer-based composite).

Due to their highly complex internal microstructure
described above, polyurea displays a very broad range of
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mechanical responses under dynamic-loading conditions. The
main features of this response can be defined as: (a) a high-level
of stress versus strain constitutive nonlinearity; (b) extreme
strain-rate (and temperature) sensitivity; and (c) a high degree
of pressure dependence. A more detailed description of the
mechanical response of polyurea when subjected to different
quasi-static and dynamic deformation modes is provided in the
subsequent section of this manuscript.

Polyurea has been used commercially for more than a
decade. The most common applications of polyurea include:

(a) Tough, abrasion-resistant, corrosion-resistant, durable
and impact-resistant (epoxy/rubber replacement) spray-
on coatings/liners in various construction/structural
applications such as tunnels, bridges, roofs, parking
decks, storage tanks, freight ships, truck beds, etc.;

(b) External and internal wall-sidings and foundation coat-
ings for buildings aimed at minimizing the degree of
structure fragmentation and, in turn, minimizing the
extent of the associated collateral damage in the case of
a bomb blast; and

(c) Gunfire/ballistic resistant and explosion/blast mitigating
coatings/liners or interlayers in blast-resistant sandwich
panels for military vehicles and structures.

In light of the aforementioned growing applications of
polyurea in blast-mitigation and impact-protection applications,
there has been substantial effort over the last few years to
characterize the mechanical response of polyurea under a wide
range of strain rates including high-speed loading conditions.
The main outcomes of this effort are summarized in the next
section. It is generally observed that the mechanical response of
polyurea is quite complex and that it is the result of the
competition and interaction of a number of processes/mecha-
nisms. Among these, the ones making the dominant contribu-
tion to the mechanical response of this class of elastomers are:

(a) Rate/time independent (equilibrium) hyperelastic (HE)
behavior which dominates material mechanical response
at low-strain rates;

(b) Large-strain material degradation which results in a
more compliant behavior of the predeformed material;

(c) Rate/time-dependent visco-plastic material behavior
which dominates material mechanical response at the
intermediate- and high-strain rates. It should be noted
that at extremely high-strain rates, the material mechani-
cal response may become again effectively rate/time
independent. However, due to fully unrelaxed state of
the material in this case, materials� stiffness will be sub-
stantially higher than that observed in the equilibrium
state; and

(d) When subjected to blast and impact loading conditions,
the resulting high-pressure conditions can significantly
affect both the equilibrium hyper-elastic and the finite-
rate visco-plastic material response.

The applications of polyurea mentioned above capitalize on
the exceptional ability of polyurea to alter/disperse shock waves
and to absorb the kinetic energy associated with these waves
(Ref 2) under high-rate loads (Ref 3). This shock-dispersion/
energy-absorption has been linked to its ability to undergo a
deformation-induced phase transition during which the rubbery
state of the material is converted to the glassy state (Ref 4).

The development of the aforementioned blast/ballistic-
protection systems based on the use of polyurea typically
involves an extensive use of experimental test programs. Such
experimental programs are critical for ensuring the utility and
effectiveness of these protection systems. However, the use of
the experimental programs is generally expensive, time-
consuming, involves damage to or destruction of the test
structures. Hence, the development of these protective systems

Fig. 2 An example of a typical tapping-mode AFM image of a
polyurea showing a rod-like morphology of the hard segments

Fig. 1 Copolymerization reaction resulting in the formation of seg-
mented polyurea. To simplify the schematic of the molecular struc-
ture, symbols HS (hard segment) and SS (soft segment) are used
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using solely the fabricate and test approaches is often cost
prohibitive. It is hence no surprise that, while the utility of
experimental test programs remains recognized, they are
increasingly being complemented with the corresponding
computation-based engineering analyses and simulations.
Recent advances in numerical analysis capabilities, particularly
the coupling of Eulerian solvers (used to model gaseous
detonation products and air) and Lagrangian solvers (used to
represent protective systems/test structures), have enabled quite
realistic computational simulations of various blast/ballistic-
impact loading conditions/scenarios. Nevertheless, the com-
puter engineering analyses in question have to be characterized
as not being fully mature. As discussed in our previous work
(Ref 5-15), the lack of maturity of computer simulations of the
blast/ballistic-impact events is mainly a consequence of inabil-
ity of the present material models (including the one for
polyurea) to realistically represent the response of the materials
subjected to large-deformation, high-deformation rate, high-
pressure conditions (the type of loading conditions encountered
under different blast/ballistic-impact events).

The main objective of the present work is to conduct a
critical assessment of all the publically available material
models for polyurea and of all the experimental methods and
tools used to obtain data needed during the formulation of these
models. In addition, an attempt is made to test the validity/
fidelity of these models by comparing their shock-Hugoniot
predictions with the available experimental results.

The organization of the article is as follows. A brief
overview of the main experimental efforts reported in the open
literature pertaining to the characterization of the mechanical
response of polyurea under various quasi-static and dynamic
deformation modes is presented in section 2. A critical
assessment of the material mechanical models for polyurea
reported in the open literature is presented in section 3. The
procedures used to generate the shock Hugoniots from the
computational results obtained in a slug-impact analysis are
discussed in section 4. The main conclusions resulting from the
present work are summarized in section 5.

2. Overview of the Prior Experimental
Investigations

In this section, a brief overview is presented of the main
findings pertaining to the experimental investigations, reported
in the open literature, of the deformation behavior of polyurea
under different quasi-static and dynamic-loading conditions. It
should be noted that the overview includes only the experi-
mental studies which were focused on generating the data used
in the polyurea material-model derivation process. In other
words, a vast body of experimental studies pertaining to the
blast/ballistic-protection performance of various polyurea bear-
ing protective structures was not the subject of the present
investigation. An overview of the latter investigations can be
found in our prior work (Ref 16-21).

The overview of the experimental investigation of interest to
the present work identified four fairly comprehensive studies of
the deformation behavior of polyurea. A brief description of
each of the four studies is presented in the remainder of this
section.

In each case, information regarding: (a) the polyurea
chemistry, stoichiometry, and synthesis; (b) the type of

experimental technique employed; (c) the strain-rate range
covered; (d) nominal test temperature(s) employed; (e) the
maximum true strain attained; and (f) examples of the typical
results obtained, are provided.

2.1 Amirkhizi et al. (Ref 22)

Polyurea chemistry, stoichiometry, and synthesis

• Lightly crosslinked polyurea synthesized from a multifunc-
tional (functionality = 2.4) isocyanate [Isonate� 2143L
(Ref 23)] and a high-molecular weight diamine [Versalink�

P1000 (Ref 24)] in a 1.05:1.0 proportion.

Type of experimental technique employed

• Unconfined and confined Split Hopkinson Pressure Bar
(SHPB), see Appendix.

Engineering strain-rate range

• 2000-4000 s�1

Nominal test temperature(s)

• 273-333 K

Maximum true strain

• 0.8 (unconfined)
• 0.1 (confined)

Typical results obtained

• Examples of the typical results obtained are displayed in
Fig. 3(a) and (b).

2.2 Yi et al. (Ref 25)

Polyurea chemistry, stoichiometry, and synthesis

• Lightly crosslinked polyurea synthesized from a multifunc-
tional (functionality = 2.4) isocyanate [Isonate� 2143L
(Ref 23)] and a high-molecular weight diamine [Versalink�

P1000 (Ref 24)] in a 1.04:1.0 proportion.

Type of experimental technique employed.

• Constant engineering-strain rate or constant true-strain rate
unconfined and confined low-rate uniaxial compression
test.

• Unconfined high-strain rate SHPB technique
• Cycling unconfined low-rate compression tests

Engineering strain-rate range

• 0.001-1.0 s�1 (low-strain-rate range)
• 1400-10,400 s�1 (high-strain-rate range)

Nominal test temperature(s)

• 298 K
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Maximum true strain

• 1.0 (unconfined low-strain-rate compression)
• 0.12 (confined low-strain-rate compression)
• 1.5 (unconfined high-strain-rate compression)
• 1.0 (unconfined cyclic loading)

Typical results obtained

• Examples of the typical results obtained are displayed in
Fig. 4(a)-(d).

2.3 Roland et al. (Ref 26)

Polyurea chemistry, stoichiometry, and synthesis

• Lightly crosslinked polyurea synthesized from a multifunc-
tional (functionality = 2.4) modified isocyanate [Isonate�

2143L (Ref 23)] and a high-molecular weight diamine
[Versalink� P1000 (Ref 24)] in a 1.04:1.0 proportion.

Type of experimental technique employed

• Drop-weight tensile test instrument

Engineering strain-rate range

• 0.15-573 s�1

Nominal test temperature(s)

• 298 K

Maximum true strain

• 1.9

Typical results obtained

• Examples of the typical results obtained are displayed in
Fig. 5.

2.4 Sarva et al. (Ref 27)

Polyurea chemistry, stoichiometry, and synthesis

• Same as in work of Yi et al. (Ref 25)

Type of experimental technique employed

• Low-moderate-strain-rate unconfined compression tests
• Moderate-intermediate-strain-rate unconfined compression

tests
• High-strain-rate unconfined SHPB.

Engineering strain-rate range

• 0.0016-0.1 s�1 (low-moderate-strain-rate range)
• 1.0-100 s�1 (moderate-intermediate-strain-rate range)
• 100-1000 s�1 (intermediate-high-strain-rate range)
• >1000 s�1 (high-strain-rate range)

Nominal test temperature(s)

• 298 K

Maximum true strain

• 1.2

Typical results obtained

• Examples of the typical results obtained are displayed in
Fig. 6.

3. Overview of the Prior Material Modeling Efforts

A review of the literature carried out as part of the present
work revealed the existence of six material models specifically

Fig. 3 Examples of the typical true-stress vs. true-strain experimen-
tal results obtained in Ref 22 for polyurea tested under; (a) uncon-
fined; and (b) confined uniaxial compression loading conditions
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developed for polyurea (Ref 22, 28-32). These models are
critically evaluated below.

3.1 Qi and Boyce (Ref 28)

This model was originally developed and parameterized for
polyurethane. However, due to considerable similarities in the
microstructure (e.g., the presence of hard and soft domains) and
the mechanical response (e.g., the presence of the so-called
‘‘stretch-induced’’ softening, i.e., a loss of material stiffness due
to prior loading) between polyurethanes and polyurea, the
model is applicable to the latter material as well. The model is
based on the following physical grounds: (a) the co-existence of
soft matrix and hard domains; (b) the ability of the soft matrix
to undergo large reversible strains; (c) the ability of hard
domains and hard-domain and soft-matrix interfaces to dissi-
pate energy via rate-dependent inelastic-deformation processes;
and (d) a deformation-induced increase in the amount of soft

matrix (and the associated loss of material stiffness), due to
disintegration of the hard domains.

The model assumes that the contribution of the soft matrix
on one side and the contribution of the hard domains and hard-
domain/soft-matrix interfaces on the other can be represented
by two parallel branches, respectively. The first soft-matrix
branch is modeled using the Arruda-Boyce HE formulation
(Ref 33) in the form:

rHE ¼ vsXl
3J

ffiffiffiffi

N
p

Kchain
L�1

Kchain
ffiffiffiffi

N
p

� �

�B0; ðEq 1Þ

where vs is effective volume fraction of soft matrix, J =
det[FHE] (FHE is the deformation gradient acting on the
HE rubbery network and is equal to the total deformation
gradient F), det denotes a determinant operator, X ¼ 1þ
3:5ð1� vsÞ þ 18ð1� vsÞ2 is the soft-matrix strain-amplification
factor, l and N are Arruda-Boyce material constants, Kchain is

Fig. 4 Examples of the typical true-stress vs. true-strain experimental results obtained in Ref 25 for polyurea tested under; (a) unconfined;
(b) and (c) confined; and (d) cyclic uniaxial compression loading conditions
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the ‘‘amplified’’ stretch in the eight-chain Arruda-Boyce model

and is defined as Kchain ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X ðk2
chain � 1Þ þ 1

q

(kchain is the

corresponding chain stretch), L�1 is the inverse of Langevin

function defined as LðbÞ ¼ coth b� 1
b;

�B ¼ �FHE�FHET
is the

isochoric left Cauchy-Green deformation tensor ð�FHE ¼
J�1=3FHEÞ and is used to denote a deviator.

It should be noted that there are two modifications in Eq 1
relative to its standard form: (a) to account for the fact that in a
unit volume of polyurea only vs portion is filled with the soft
matrix, a vs multiplier is introduced and; (b) to account for the
fact that the elastic deformation is mainly localized within the
soft matrix, the average stretch within each of the Arruda-
Boyce eight chains, kchain, is replaced with an amplified

counterpart, Kchain. In addition, vs is not considered as a
constant but rather a quantity which increases with deforma-
tion. Hence, an evolution equation (given later in this section) is
proposed for vs in Ref 28.

The Cauchy stress within the second (elastic/visco-plastic,
EVP) branch is next defined as:

rEVP ¼ vh
JE

LE½lnVE�; ðEq 2Þ

where vh = 1� vs is the hard-domain volume fraction, JE =
det(FE) represents the Jacobian of the elastic part of
FEVP(=F = FHE) resulting from multiplicative decomposition
FEVP = FEFVP, LE is the fourth order elastic stiffness tensor,
and lnVE is the logarithmic strain, VE is the left elastic stretch
tensor resulting from the polar decomposition, FE = VERE

(RE = R is the rotation tensor). Equation 2 represents six
equations with 12 (six rEVP components and six VE compo-
nents) unknowns.

It should be noted that while FEVP maps the reference
configuration into the current configuration, it is FVP that maps
the initial configurations into the so-called ‘‘relaxed configu-
ration’’ (i.e., the configuration which is obtained by elastic
unloading from the current configuration). Using the standard
definition of the velocity gradient, L, the velocity gradient
corresponding to FVP is defined as LVP ¼ _FVPðFVPÞ�1 ¼
DVP þWVP; where DVP and WVP are the visco-plastic defor-
mation rate and spin, respectively. Next without loss of
generality, WVP is set to zero and DVP is set equal to LVP.
The flow rule is then defined as:

DVP ¼ _FVP FVP
� ��1¼ _cVP

�T 0
ffiffiffi

2
p

�s
; ðEq 3Þ

where _cVP is the equivalent visco-plastic shear strain rate, �T 0

is (deviatoric) Cauchy stress mapped onto the relaxed config-
uration and �s ¼ 1

ffiffi

2
p �T 0j j is the equivalent shear stress associ-

ated with the �T 0 stress, |…| stands for the magnitude of a
quantity.

The following constitutive definition of _cVP was proposed:

_cVP ¼ _c0 exp �
DG
kh

1� �s
s

� �	 


; ðEq 4Þ

where _c0 is the (thermal-activation based) preexponential
(frequency) reference-rate term, DG is the zero- �s activation
energy, k is the Boltzmann�s constant, h is the temperature,
and s the so-called ‘‘athermal’’ shear strength which repre-
sents the long-range resistance to visco-plastic deformation
and is defined as:

s ¼ vh
vh0

� �

s0; ðEq 5Þ

where vh0 is the initial hard-domain volume fraction and s0 is
the initial value of s.

Equation 2, 3, and 4, represent a system of 13 equations
with 13 unknowns (six rEVP components, six FE components,
and _cVP). However, before these equations can be solved, stress
�T (its deviator and invariants, like �s) have to be converted into
their Cauchy stress counterparts. This is done through the use
of the following relation:

�T ¼ JE RE
� �T

rRE; ðEq 6Þ

where RE = R due to the irrotational nature (WVP = 0) of the
visco-plastic part.

Fig. 5 Examples of the typical true-stress vs. true-strain experimen-
tal results obtained in Ref 26 for polyurea tested under uniaxial com-
pression loading conditions

Fig. 6 Examples of the typical true-stress vs. true-strain experimen-
tal results obtained in Ref 27 for polyurea tested under unconfined
uniaxial compression loading conditions
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On obtaining the solution of the foregoing system of
equations for rEVP, the contributions of the two branches rHE

and rEVP are added to obtain the complete Cauchy stress.
To carry out this procedure for additional time steps, the

soft-matrix volume fraction, vs, must be updated. This is done
using the following integrated form:

vs ¼ vss � vss � vs0ð Þ exp �A Kchain � 1

klock
chain � Kchain

 !

; ðEq 7Þ

where vs0 and vss are the initial and saturation values
of vs, klock

chain is the locking stretch of the chain (vs fi vss as
Kchain fi klock

chain) and A is a parameter that characterizes the
evolution in vs with increasing Kchain.

There are two main concerns regarding this model: (a) all
the rate dependence has been attached to the hard domains (and
the hard-domain/soft-matrix interfaces), i.e., no account is
given of the visco-elasticity in the soft matrix; and (b) the
relations pertaining to the evolution of volume fraction of the
soft matrix and of the athermal shear strength of the hard
domains are defined using phenomenological approaches which
do not account for the underlying microstructural processes in
polyurea and the relations used are essentially borrowed from
the related filled-rubber problems.

3.2 Amirkhizi et al. (Ref 22)

Within this model, the hydrostatic response of the material is
considered to be isotropic temperature-dependent geometrically
nonlinear/materially linear elastic while the deviatoric response
of the material is assumed to be time-dependent and treated
using a geometrically nonlinear/materially linear isotropic
visco-elastic formulation.

Within the hydrostatic part of the model, pressure is defined
as:

P ¼ �KðhÞlnðJÞ
J

; KðhÞ ¼ Kðhref Þ þ mðh� href Þ; ðEq 8Þ

where subscript ref is used to denote a quantity at the refer-
ence temperature, K is the bulk modulus, and m is a material
parameter.

To account for the aforementioned time-dependent character
of the deviatoric material response, the deviatoric Cauchy
stress, r¢, is evaluated within the model by taking into
consideration the entire deformation history of a given material
point from the onset of loading at t = 0 to the current time, t, as:

r0ðtÞ¼2G1
h

href

Z

t

0

1þ
X

n

i¼1
pi exp

� nðtÞ�nðsÞð Þ
qi

� �

D0 sð Þ
 !

ds;

ðEq 9Þ

where G¥ is the ‘‘long-term’’ shear modulus (i.e., the value of
the shear modulus after infinitely long-relaxation time), n is
the number of terms in the Prony series exponential-type
relaxation function, pi and qi are, respectively, the strength
and the relaxation time of each Prony series term, n is the
so-called reduced time, and D¢ (=D� 1/3 * tr(D) * I, tr denotes
trace operator and I an identity tensor) is the deviatoric part of
the rate of deformation tensor, D ð¼ sym( _FF�1Þ;where
‘‘sym,’’ the raised dot and superscript ‘‘�1’’, are used to
denote, respectively, the symmetric part, the time derivative,
and the inverse of a second-order tensor).

It is important to note that the Eq 9 is not objective and that
its use is justified only under conditions of small rotation. For
Eq 9 to become objective under large-rotation cases, it must be
properly modified by replacing the deviatoric stress rate (in the
integrand of Eq 9) by one of its objective counterparts. Since
this modification is of a pure kinematic nature, it can be readily
implemented but the resulting formulation is associated with a
significantly higher computational cost.

To account for the effect of temperature and pressure on
the kinetics of relaxation processes responsible for the
observed visco-elastic behavior, the concept of reduced time
is used as:

nðtÞ ¼
Z

t

0

dt

10A h�CTPP�hrefð Þ= Bþh�CTPP�hrefð Þ; ðEq 10Þ

where A, B, and CTP are material constants. Thus, the effect
of temperature, h, and pressure, P, over a time period t on the
material response is assumed to be identical to the material
response at the reference temperature and pressure over a
time period n(t). It should be noted that through the use of
the reduced time concept, the effect of temperature is mod-
eled by changing the time scale while leaving the material
parameters pi and qi constant and equal to their values at the
reference temperature.

To determine temporal evolution of the temperature, an
adiabatic assumption is invoked, i.e., it is assumed that there is
no heat transfer and that the rate of change of the local internal
thermal energy is equal to the corresponding rate of dissipative
work as:

Cv
_h ¼ @Wd

@t
¼ 2G/

hðtÞ
href

X

n

i¼1

pi
qi

eidðtÞ : eidðtÞ; ðEq 11Þ

where Cv is the constant volume specific heat, _h is the
temperature change rate, and ed is the dissipative strain
defined as:

eidðtÞ ¼
Z t

0
e�

nðtÞ�nðsÞð Þ
qi D0ðsÞds ðEq 12Þ

At the first glance, evaluation of the stress appears straight
forward through the use of Eq 8 and 9. However, this would
require that Eq 9 be integrated from t = 0 at each time step
(an extremely high-computational cost). To overcome this
problem, concepts of the ‘‘creep’’ (i.e., elastic) and ‘‘dissipa-
tive’’ (i.e., viscos) strains within each branch are used so that
r¢(t + Dt) is computed as vr¢(t) + Dr¢(t), where scaling v
accounts for stress relaxation of r¢(t) during the t + Dt time
interval.

A summary of all the parameters for this polyurea material
model is shown in Table 2 in Ref 22.

Critical assessment of this model identified three points of
concern: (a) the aforementioned lack of objectivity under large
rotations; (b) lack of inclusion of the so-called ‘‘stretch-
induced’’ softening (i.e., a loss of material stiffness due to prior
loading); and (c) the use of the reduced time concept is based
on the so-called ‘‘time-temperature superposition’’ principle.
Since different vibrational modes, e.g., segmental, chain, etc.
are present within polyurea, for the reduced time approach to be
valid all these modes must be equally affected by temperature
(which is typically not the case).
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3.3 Li and Lua (Ref 29)

Within this model, the hydrostatic response of the material is
considered to be incompressible. Consequently the model, in its
original formulation can only be used in the deformation
analysis in which pressure can be assessed through alternative
means. For example, in the uniaxial stress case, the zero stress
condition in the lateral directions enables the determination of
the pressure. As far as the deviatoric response is concerned, it is
assumed to be the result of responses of two parallel branches,
one HE and one viscoelastic (the viscoelastic branch is, in turn,
allowed to contain multiple parallel viscoelastic subbranches).
The HE branch which controls material mechanical response
under low-deformation rates is represented using the Ogden-
type model (Ref 30) and the corresponding strain energy
density function is defined as:

W ¼
X

n

i¼1

2li

a2
i

kai
1 þ kai

2 þ kai
3 � 3

� �

; ðEq 13Þ

where li and ai (i = 1, 2,…,n; n is the number of branches)
are material-model parameters and k1, k2, and k3 (=1/(k1k2))
are the principal stretches. By using the standard relationships
between: (a) the right Cauchy-Green deformation tensor, C,
and the green strain E; (b) the Green-strain gradient of the
strain energy and the second Piola Kirchoff stress; (c) the
Cauchy stress and the second Piola Kirchoff stress and by
recognizing that k1

2, k2
2, and k3

2 are eigen values of C, an
expression for the Cauchy stress within the HE branch is
derived (Eq 4) in Ref 29.

As far as the visco-elastic branch(s) is concerned, it was
handled in a manner similar to Eq 9. The main difference is that
the stress equation is made objective here by carrying out the
required time integration within the reference configuration and
then mapping the resulting second Piola Kirkhoff stress to the
current configuration to obtain:

rVE ¼ �pVEI þ FðvÞ
Z

t

0

/ðI1; I2Þmðt � sÞ _EðsÞdsFT ðtÞ;

ðEq 14Þ

where /(I1, I2) is the material-nonlinearity visco-elastic
kernel, m(t� s) is a relaxation function containing the contri-
bution of all the viscoelastic branches and _E is the (objective)
Green-strain rate.

The total Cauchy stress is then obtained by summing the HE
and visco-elastic contributions. The computational procedure
employed to calculate rVE follows closely that used by
Amirkhizi et al. (Ref 22). A summary of all the parameters
for this polyurea material model is shown in Table 1 in Ref 29.

Critical assessment of this model identified that, with the
exception of the problem related to the lack of objectivity, this
model suffers from similar deficiencies as the one of Amirkhizi
et al. (Ref 22).

3.4 Jiao et al. (Ref 31)

This model is quite similar to the Qi and Boyce model
(Ref 28) and considers the presence of two branches, on HE
and the other elastic/visco-plastic. However, in contrast to Qi
and Boyce model (Ref 28): (a) the first branch is represented
using the Neo-Hookean HE formulation; (b) no account is

given to the fact that this branch is associated with the soft
matrix (i.e., no vs multiplier was used); (c) neither soft-matrix
strain amplification nor evolution of the soft-matrix volume
fraction is considered. Consequently, the Cauchy stress within
the HE branch is defined as:

rHE ¼ 2C10

J 5=3
B0ð Þ þ KHE ln J½ �I ; ðEq 15Þ

where 2ÆC10 is the initial shear modulus, B¢ is the deviatoric
part of the left Cauchy deformation tensor, B(=FFT) and KHE

is the bulk modulus.
In the second (visco-plastic) branch, the Cauchy stress is

considered to be a sum of a deviatoric and a pressure term as:

rVP ¼ r0VP � pVPI ðEq 16Þ

where r0VP is defined using the following linear relation:

r0VP ¼ 2l lnVE � 2l
3
tr lnVE
� �

I ; ðEq 17Þ

where l is the second-branch shear modulus. In Eq 17, the
only unknown is VE which can be determined once FE=
F(FVP)�1 is determined. Toward that end, the following flow
rule is defined in the current configuration

DVP ¼ sym(LVPÞ ¼ sym FE _FVPFVP;�1FE;�1� �

¼ _cVP
r0VP

r0VPj j=
ffiffiffi

2
p

ðEq 18Þ

where it is, as in the Qi and Boyce model (Ref 28), again
assumed that the visco-plastic spin WVP = LVP�DVP is zero
(i.e., plastic flow is irrotational, LVP = DVP). The visco-plastic
equivalent shear strain rate _cVP is defined as

_cVP ¼ _c0 exp
ss � ss0 � ap

b

� �

; ðEq 19Þ

where _c0 is a material-dependent preexponential frequency
term, ss0 ¼ DU=v (DU is the activation energy and v is the
activation volume), a = X(p)/v (X(p) is the pressure activa-
tion volume) and b = kh/v.

When Eq 17, 18, and 19 are combined one obtains 13
equations with 13 unknowns (six rVP components, six VE

components and _cVP). The pressure within the visco-plastic
branch is computed as a difference between the total pressure
and the hyper-elastic pressure defined later. The total pressure is
computed using the Lennard-Jones type relation as:

p ¼ �A J�N�1 � J�M�1
� �

; ðEq 20Þ

where N = 6, M = 3 and A is one-sixth of the corresponding
cohesive energy (defined by fitting the experimental data).
Once the equations are solved, the rVP can be computed with
rHE to obtain the total Cauchy stress.

This model suffers from the same deficiencies as the Qi and
Boyce model (Ref 28). In addition, the model neglects the
effect of hard-domain degradation and the associated loss of
stiffness during deformation.

3.5 El Sayed (Ref 34)

This model considers the presence of one HE-plastic and
several visco-HE branches, all connected in parallel. The HE
response within each branch is modeled using an Ogden strain
energy density function. The plastic (deviatoric + hydrostatic)
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response of the first branch is considered to be strain and strain-
rate hardenable while the visco-elastic response of the remain-
ing branch(es) is treated using the Prony series formulism.

The HE strain energy density within all the HE branches is
defined additively as:

WHE ¼ WHE;vol þWHE;dev; ðEq 21Þ

where WHE,vol, the volumetric part of the strain energy func-
tion, is defined as:

WHE;volðeHEV ; hÞ ¼ K

2
½eHEV � hðh� h0Þ�2; ðEq 22Þ

where eHEV is the volumetric elastic logarithmic strain within a
given branch and h is the thermal expansion coefficient,
while, WHE,dev, the deviatoric part of the strain energy func-
tion, is represented using a Ogden-type model (Ref 30) as:

WHE;devðeHE; hÞ ¼
X

3

j¼1

X

N

n¼1

ln

an
½expðeHEj Þ�

an � 1
� �

; ðEq 23Þ

where N is the number of Ogden-terms considered (for time-
invariant behavior), eHEj (j = 1,2,3) are the eigenvalues of eHE

(=dev(eHE), eHE ¼ 1
2 logðFHET

FHEÞ:
3.5.1 HE/Plastic Branch. Within the first branch, the

deformation gradient, FHE can be calculated by multiplicative
decomposition of FHEP (=F=FHE FP)) and eHEV ¼ trðeHEÞ: The
strain energy functions given in Eq 22 and 23 are next
differentiated with respect to eHEV and eHEj ; respectively, to get

the pressure and the principal deviatoric Cauchy stresses, p and

rj
HEP, in the first (HE-plastic) branch as: pHEP ¼ �@WHE;vol

@eHEV
and

rHEP0
j ¼

P

N

n¼1
ln expðeHEj Þ

an : The total Cauchy stress is then

given by:

rHEP ¼ �pHEPI þ
X

3

j¼1
rHEP0
j zj � zj; ðEq 24Þ

where ‘‘� ’’ indicates a dyadic product and zj are unit-norm
deviatoric Cauchy-stress/strain eigen vectors.

It should be noted that in order to compute the Cauchy stress
in the first branch via Eq 24, it is necessary to determine the
elastic deformation gradient FHE(=FÆ(FP)�1)). This is done
using the following flow rule:

_FpðFpÞ�1 ¼ _epVN
p þ _epMp; ðEq 25Þ

where Np and Mp are plastic flow directions (second-order
tensors subject to following normality constraints: tr(Np) =
±1; tr(Mp) = 0 and Mp:Mp = 3/2), _epV is the effective volu-
metric plastic strain rate and _ep is the effective deviatoric
plastic strain rate. The two plastic flow directions are, respec-
tively, defined as:

M p ¼
ffiffiffi

3

2

r

rHEP0

rHEP0












ðEq 26Þ

and

N p ¼ 1

3
sgnðpHEPÞI ðEq 27Þ

where sgn(…) represents the sign operator.

Equation 25 introduced two new variables, _epV and _ep; which
can be handled using the volumetric and the deviatoric yield
criteria as:

�p� �pc ¼
@w�;vol

@ _epV
; ðEq 28Þ

where �p ¼ @WHE;vol

@eHEV

� �

is the effective pressure, �pc ¼ @W p;vol

@epV

� �

;

where W p;vol epV; h
� �

¼ nr0ðhÞep0
nþ1 Nv

4pa3
3 gðepV; nÞ; r0(h) is the

initial yield strength; a is the void radius (volumetric plastic-
ity is assumed to be associated with void dilation/contrac-
tion); n is the hardening exponent; Nv is the void density;
f (=(f0 + Jp� 1)/Jp; where f0 is the initial void volume frac-

tion given by f0 ¼ Nv
4pa30
3 ;, a0 is the initial void radius;

g epV; n
� �

¼
R

1=f

1

1þ 2
3ep0

log x

x�1þ f0
f0þexp e

p
V
�1

 !
nþ1
n

dx and ep0 is the

reference deviatoric plastic strain rate) is the volumetric yield

strength and w�;vol is the volumetric part of the kinetic poten-
tial given by:

w�;vol J p; _epV; h
� �

¼ mpr0 hð Þ _ep0
mp þ 1

Nv
4pa3

3
1� f

1
mp

� � 2 _a

_ep0a

























mpþ1
mp

ðEq 29Þ

where mp is the rate sensitivity exponent and _ep0is the refer-
ence plastic strain rate) is the void volume fraction. The devi-
atoric part of the yield criterion is given by:

�r� �rc ¼
@w�;dev

@ _ep
; ðEq 30Þ

where �r ¼ @WHE;dev

@�eHE ; �eHE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 e

HE : eHE
q

� �

is the effective

deviatoric stress, �rc ¼ @W p;dev

@ep

�

; ep is the effective deviatoric

plastic strain; W p;dev ep; hð Þ ¼ nr0 hð Þep0
nþ1 1þ ep

ep0

� �
nþ1
n

�

is the devia-

toric yield strength and w�;dev is the deviatoric part of the
kinetic potential given by:

w�;dev _ep; hð Þ ¼ mpr0 hð Þ _ep0
mp þ 1

_ep

_ep0

� �
mpþ1
mp

ðEq 31Þ

When Eq 24, 25, and 30 are combined one obtains 13

equations with 13 unknowns (six rHEP0 components, six eHE

components and _ep) which can be solved to obtain the
deviatoric stress in the first branch. Next, Eq 24, 25, and 28
can be combined to give three equations with three unknowns
(pHEP, eV

p , and eHEV ) which can be solved to yield the pressure
in the first branch. The total stress is then calculated using
Eq 24.

3.5.2 Visco-HE Branch. The HE strain energy density
within the visco-HE branches is defined additively as:

WHE
i ¼ W

HE;vol

i þW
HE;dev

i ; ðEq 32Þ

where W
HE;vol

i ; the volumetric part of the strain energy func-
tion for the visco-HE branches, is defined as:

WHE;vol
i eHEV;i ; h

� �

¼ Ki

2
eHEV;i

� �2
; ðEq 33Þ

where eHEV;i is the volumetric elastic logarithmic strain in the
ith visco-HE branch while, W

HE;dev

i , the deviatoric part of the
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strain energy function, is represented using a Ogden-type
model as:

WHE;dev
i eHEi ; h

� �

¼
X

3

j¼1

X

Ni

n¼1

li;n

ai;n
exp eHEi;j

� �h iai;n

�1
� �

; ðEq 34Þ

where Ni is the number of Ogden-terms considered for time-
infinity behavior in the ith visco-HE branch, eHEi;j (j = 1,2,3)

are the eigenvalues of eHEi (¼ devðeHEi Þ; eHEi ¼ 1
2 logðFHET

i

FHE
i Þ where FHE

i can be calculated by multiplicative decom-
position of Fi

VHE (=F = Fi
HE Fi

V)) and eHEi;V ¼ trðeHEi Þ: The vis-

cous principal stresses are then calculated as:

rVHE
i;j ¼ @W

HE
i

@eHEi;j
; ðEq 35Þ

where eHEi;j are the eigen values of eHEi : The pressure in each
visco-HE branch is then defined by the following expression:

pVHEi ¼ 1

3
rVHE
i;1 þ rVHE

i;2 þ rVHE
i;3

� �

ðEq 36Þ

The deviatoric principal stresses in each visco-HE branch
are then calculated as:

rVHE0
i;j ¼ rVHE

i;j � pVHEi ðEq 37Þ

Finally, the total Cauchy stress in each visco-HE branch is
calculated as:

rVHE
i ¼ �pVHEi I þ

X

3

j¼1
rVHE0
i;j MV

i;j �MV
i;j ; ðEq 38Þ

where MV
i;j are unit-norm Cauchy-stress/deformation rate

DV
i ¼ _FV

i FV
i

� ��1
� �

eigen vectors.

However, before the Cauchy stress in the ith visco-HE
branch is computed, it is necessary to determine the elastic
deformation gradient Fi

HE (=F Æ (Fi
V)�1)). This is done using the

following flow rule:

_FV
i FV

i

� ��1¼
X

3

j¼1
_eVi;jM

V
i;j �MV

i;j ; ðEq 39Þ

where _eVi;j are the eigenvalues of DV
i ¼ _FV

i FV
i

� ��1
(viscous

spin is assumed to be zero). In order to compute the total
Cauchy stress, an additional equation is necessary. This equa-
tion is the one for the viscous principal stresses:

rVHE
i;j ¼ @W

HE;dev
i

@eHEi;j
¼ @/

�;dev
i

@ _eVi;j
ðEq 40Þ

where

/�;devi _eVi ; h
� �

¼
X

3

j¼1

X

Ni

n¼1

gdevi;n

ai;n
exp

_eVi;j
_eV0i;j

 !" #ai;n

�1
 !

; ðEq 41Þ

where gdev is a deviatoric viscous coefficient and, _eVi;j and
_eV0i;j are the current and reference eigenvalues of the viscous
strain rate.

WhenEq 38, 39, and40 are combinedoneobtains 12equations
with 12 unknowns (six ri

VHE components, three ei,j
HE components

and three _eVi;j components) for eachof the visco-HEbrancheswhich
can be solved to obtain the Cauchy stress in each branch.

The model also takes into account the plastic expansion or
contraction of voids and therefore the stresses are appropriately
modified to account for the effect of microinertia (Ref 35, 36).
However, for brevity, this portion of the model is not reviewed
here.

The following main concerns have been identified with
regard to this model:

(a) a relatively large number of parameters and a need for
extensive parameter identification efforts; (b) the model is of a
generic type and does not include any unique features
associated with polyurea microstructure/response; and (c) the
model was never validated under more general three-dimen-
sional dynamic-loading conditions.

3.6 Grujicic et al. (Ref 32)

The two main differences between this model and the
models described above are: (a) this model is of an equilibrium
(time-invariant/quasi-static) type; and (b) a substantially larger
degree of material�s physics is used during the process of
material-model formulation. That is, the key components of this
material (mechanical) model are developed by first constructing
a simple molecular-level microstructure model and by relating
the microstructural elements and intrinsic material processes to
the material mechanical response. For example, the evolution
equation for the deformation-induced softening and inelasticity
observed in polyureas is directly linked to the associated
evolution of the soft-matrix/hard-segment molecular-level
microstructure of this material.

Overall, the model can be characterized as being isotropic,
hyper-elastic (with degradable elastic stiffness components) and
rate-independent plastic. Consequently, at small strains, the
mechanical response of polyurea is completely reversible, i.e.,
no permanent changes in the material microstructure or residual
strains are observed. At larger strains, however, degradation/
breakage of the hydrogen bonds within the hard segments of
polyurea gives rise both to inelastic-deformation and stiffness-
degradation effects. The model was fully parameterized using
one set of open literature experimental data, validated against
another set of experimental data and formulated as a general
finite-strain HE/plastic three-dimensional material model and
implemented into a user-material subroutine for easy incorpo-
ration into the commercial finite element programs. Additional
details regarding this model can be found in Ref 32.

The main concern regarding this model is that it is of a
quasi-static nature and, hence, of little utility with respect to its
use in computer-aided engineering analyses of various shock/
ballistic-impact scenarios.

4. Polyurea-slug impact on a rigid, fixed
flat target

In this section, an attempt is made to compare the
predictions of the six material models for polyurea overviewed
in the previous section. Since the main application of polyurea
considered here involves high-rate (shock-type) dynamic
loading, the models are used within a simple transient nonlinear
dynamics analysis to predict the three basic shock-Hugoniot
relations: (a) axial-stress (r11) versus specific volume (v); (b)
shock speed (Us) versus particle velocity (up); and (c) mass-
based internal energy density (e) versus v.
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The computational analysis employed here considered the
case of a rectangular slug hitting a rigid fixed flat target at a
zero-obliquity angle. To mimic the more common conditions
encountered near the center of the target surface associated with
collision of a plate-like polyurea structure, zero normal lateral-
strain and zero all-shear strain conditions are applied to the
polyurea slug. Thus, the problem analyzed is essentially of a
one-dimensional nature, Fig. 7.

The expected (and obtained) temporal evolution of the
material within the slug following the impact can be described
as follows: After impact, polyurea at the impacted end of the
slug becomes compressed and a compressive shock wave
begins to travel in the direction opposite to the slug-motion
direction. Polyurea material particles swept by the compressive
shock are brought to the state of rest. When the (densifying)
shock wave reaches the free end of the slug, it reflects as a
tensile wave (or more precisely as a release wave). The tensile
wave then travels toward the target surface and all the polyurea
material particles swept by this wave are imparted a velocity
(i.e., a linear momentum) in the direction opposite to the initial
motion-direction of the slug. When the release wave has
managed to fully traverse the slug, all the particles are imparted
this momentum and the slug, as a whole, separates from the
target and continues to move in the direction opposite to the
initial impact direction. It is this (residual) momentum of
the slug that governs the extent of momentum transfer to the
target surface.

4.1 Problem Formulation

As mentioned above, the basic problem analyzed in this
section is the one-dimensional impact of a polyurea slug
against a rigid, fixed flat target surface. The case of a 0.03-m
long rectangular polyurea slug was considered in the present
work (slug lateral dimensions are irrelevant due to the one-
dimensional nature of the problem at hand). The initial
volumetric state of polyurea is defined by its initial density
qinit (=1100 kg/m3).

4.2 Computational Procedure

The physical problem at hand is cast as a finite element
problem and solved within a Lagrangian framework using
ABAQUS/Explicit (Ref 37). Typically, 1000 eight-node

first-order reduced-integration brick-type elements are used.
The lateral nodal degrees of freedom are suppressed while all
the slug nodes are initially assigned a constant velocity. The
target is modeled as a rigid, fixed, flat analytical surface. Slug/
target contact is modeled using a penalty contact algorithm.
Within the penalty contact method, the penetration of the
surfaces into each other is resisted by linear spring forces/
contact pressures with values proportional to the depth of
penetration. These forces, hence, tend to pull the surfaces into
an equilibrium position with no penetration. Contact pressures
between two bodies are not transmitted unless the nodes on the
‘‘slave surface’’ contact the ‘‘master surface.’’ There is no limit
to the magnitude of the contact pressure that could be
transmitted when the surfaces are in contact. Transmission of
shear stresses across the contact interfaces is defined in terms of
a static and a kinetic/sliding friction coefficient and an upper-
bound shear stress limit (a maximum value of shear stress which
can be transmitted before the contacting surfaces begin to slide).

To accurately capture the shock/release wave-front structure,
no artificial damping (a procedure which improves computa-
tional robustness) was used. Instead, the wave front was
naturally stabilized by the accompanying energy dissipation
processes.

Each of the polyurea models reviewed in the previous
section is implemented as a VUMAT User-material subroutine
and linked with the ABAQUS/Explicit (Ref 37) solver.

4.3 Results and Discussion

Examples of the typical results obtained in this portion of
the work are displayed in Fig. 8(a)-(c).

Temporal evolution of the contact pressure at the slug/
target interface at two levels of slug initial velocity (500 and
1000 m/s) is depicted in Fig. 8(a). Examination of the results
displayed in Fig. 8(a) reveals that the magnitude of the contact
pressure increases while slug-target contact time decreases with
an increase in the slug initial velocity. It should be noted that the
area under the contact pressure versus postimpact time curve is
equal to the specific momentum transferred to the target during
impact.

Spatial variation of the polyurea material-particle velocities
(normalized by the slug initial velocity) at different postimpact
times for the case of slug initial velocity of 1000 m/s is
depicted in Fig. 8(b). It should be noted that (slug initial-length
normalized) undeformed spatial coordinates are used as the
abscissa in Fig. 8(b). Examination of the results displayed in
Fig. 8(b) reveals that, as expected, impact of the slug against
the rigid fixed target causes generation of a shock wave moving
toward the free end of the slug (located at x/L = 0.0). The
material swept by the shock wave has been brought into the
zero velocity state. On the reflection of the shock wave from
the slug free end, a release/tensile wave is generated and begins
to move toward the target. In the slug region swept by the
release wave, material particles are imparted a velocity opposite
to the slug initial direction of motion.

Spatial variation of the polyurea density at different
postimpact times for the case of slug initial velocity of
1000 m/s is depicted in Fig. 8(c). Examination of the results
displayed in Fig. 8(c) reveals that these results are the expected
counterparts of the results displayed in Fig. 8(b). Namely,
shock loading of the slug densifies the material within the slug,
while the passage of a subsequent release wave (not shown for
brevity) reduces the density. These findings are in agreement

Fig. 7 A schematic of the zero-obliquity slug-impact problem
involving a flat, rigid, fixed target
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with the basic theory of shock-wave generation and propaga-
tion which states that at the shock front the material changes
between the preshock and the postshock states along the
so-called Rayleigh line (a line along which material state
variables, such as the particle velocity and the mass density, are
related via a simple functional relation).

To test the predictions of the six polyurea material models in
the dynamic-loading regime, the results like the ones displayed
in Fig. 8(a)-(c) are used to generate the three shock-Hugoniot
relations mentioned earlier. A shock Hugoniot is a locus of
material states attainable (for a given material initial state) after
passage of shocks of various strengths. While the shock
Hugoniot is defined within a multidimensional (stress-specific
volume, specific energy density, particle velocity, temperature,
shock velocity, …) space, it is generally displayed using the
appropriate two-dimensional projections (e.g., r11 versus v, Us

versus up, and e versus v). It should be noted that the material
model defines a surface in the same multidimensional (material
state) space and that the Hugoniot is an intersection between
this surface and a surface defining interrelationships between
the same state variables behind the shock front in any material.
Hugoniots are typically used to analyze the propagation and
interaction of planar shock waves.

The six computed r11 versus v shock Hugoniots obtained
are displayed in Fig. 9(a). The r11 data (at a given slug-impact
velocity) were taken directly from the contact pressure versus
time results (like the ones displayed in Fig. 8(a)). The
corresponding specific-volume data are obtained by taking
the reciprocal of the shocked-material densities (like the ones
displayed in Fig. 8(c)). For comparison, the experimental data
reported in Ref 38 are also shown in Fig. 9(a). Examination of
the results displayed in Fig. 9(a) reveals that:

(a) the six polyurea models give rise to a vastly different
axial stress versus specific volume Hugoniots;

(b) the overall best agreement between the computational
and the experimental results is obtained in the case of
the model of Grujicic et al. (Ref 32) with the model of
Jiao et al. (Ref 31) being the second best;

(c) the observed poor prediction of the Qi and Boyce model
(Ref 28) can be attributed to the fact that its parameteri-
zation was carried out by simply correlating the material
parameters for polyurea to the Qi and Boyce material
parameters for polyurethane; and

(d) the poor prediction of the model by Li and Lua
(Ref 29) is the result of the fact that the model parame-
terization was carried out using uniaxial tensile experi-
mental results and this parameterization is inherently
incompatible with the compressive behavior of polyurea.

The six computed Us versus up shock Hugoniots obtained
are displayed in Fig. 9(b). The Us data (at a given slug-
impact velocity) is obtained by monitoring the shock-front
position as a function of time (using the results like the ones
displayed in Fig. 8(b), (c)). The particle velocity up is set
equal to the slug initial velocity. For comparison, the
experimental data reported in Ref 38 are also shown in
Fig. 9(b). Examination of the results displayed in Fig. 9(b)
reveals that the model of Jiao et al. (Ref 31) yields an
excellent agreement with the experimental results. The
remaining findings are consistent with the ones reported
above in conjunction with Fig. 9(a).

Fig. 8 (a) Temporal evolution of the slug/target contact pressure at
two slug velocities (500 and 1000 m/s); and spatial distribution of
(b) the (slug initial velocity) normalized polyurea density at different
slug/target postimpact times for the case of 1000 m/s slug initial
velocity
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The six computed e versus v shock Hugoniots obtained are
displayed in Fig. 9(c). The e data (at a given slug-impact
velocity) are obtained by combining the results displayed in
Fig. 9(a) with the Rankine-Hugoniot equation (Ref 39). For
comparison, the experimental data reported in Ref 38 is also
shown in Fig. 9(c). Examination of the results displayed in
Fig. 9(c) reveals that the extents of agreement between the
various computed e versus v Hugoniots and their experimental
counterpart are comparable to those previously observed in the
case of axial stress versus specific-volume Hugoniots, Fig. 9(a).

5. Summary and Conclusions

Based on the results obtained in the present work, the
following main summary remarks and conclusions can be
drawn:

1. A comprehensive overview of the main experimental
efforts reported in the open literature pertaining to the
characterization of the mechanical response of polyurea
under various quasi-static and dynamic deformation
modes is carried out.

2. A parallel comprehensive overview and a critical assess-
ment of the material mechanical models for polyurea
reported in the open literature are presented.

3. To test the validity/fidelity of the available polyurea mate-
rial mechanical models, a transient nonlinear dynamics
analysis of a polyurea slug impacting a flat, rigid, fixed tar-
get is carried out. The results obtained are used to con-
struct the appropriate shock-Hugoniot relations which are
in turn, compared with their experimental counterparts.

4. The aforementioned comparison established that, while
different material models yield vastly different shock-
Hugoniot relations, the predictions of a couple of the
models are in reasonably good agreement with their
experimental counterpart.
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Appendix: Split Hopkinson Pressure Bar

The SHPB setup is used for determination of the high-strain-
rate (unconfined or confined) compression stress versus strain
data. As schematically represented in Fig. A1, an SHPB setup
consists of a striker bar, an incident bar, the specimen being
tested and the transmitter bar. A rectangular compression wave
of well-defined amplitude and duration is generated in the
incident bar when the incident bar is struck by the striker bar.
When the wave reaches the incident bar/specimen interface, it
is partially transmitted into the specimen (and subsequently)

Fig. 9 A comparison between six computed shock Hugoniots and
their experimental counterpart. The following shock Hugoniots are
compared: (a) r11 vs. v; (b) Us vs up; (c) e vs. v
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into the transmitter bar, and partially reflected back to the
incident bar.

Using a one-dimensional wave propagation analysis, it is
possible, as shown below, to determine high-strain rate stress-
strain curves from measurements of the temporal evolution of
strain in the incident and transmitter bars.

Propagation of waves along the length of the bar (x direc-
tion) is, to a good approximation, governed by the one-
dimensional wave equation:

@2u

@x2
� 1

c2
@2u

@t2
¼ 0 ðEq A:1Þ

which has the solution within the incident bar:

u ¼ f ðx� ctÞ þ gðxþ ctÞ ¼ f ðz1Þ þ gðz2Þ ¼ ui þ ur;

ðEq A:2Þ

where ui is the incident wave, ur is the reflected wave, c is
the speed of propagation of the wave, t time and z1 and z2
are single variables that f and g depend on, respectively. The
corresponding axial strain in the incident bar is then defined
as:

e ¼ @u
@x
¼ @ðui þ urÞ

@x
ðEq A:3Þ

Substituting Eq A.3 into Eq A.2 yields:

e ¼ df

dz1

@z1
@x
þ dg

dz2

@z2
@x
¼ df

dz1
þ dg

dz2
¼ f 0 þ g0 ¼ ei þ er

ðEq A:4Þ

The velocity of any material point in the incident bar can be
determined by differentiating Eq A.2 with respect to time as:

_u ¼ @ðui þ urÞ
@t

¼ df

dz1

@z1
@t
þ dg

dz2

@z2
@t

¼ � cf 0 þ cg0 ¼ cð�f 0 þ g0Þ ¼ cð�ei þ erÞ (Eq A.5)

In the case of the transmitter bar, there is only one wave, the
transmitted wave, propagating through it (until the wave
reflects at the free end of the transmitter bar, which takes place
at a post data-collection time). Therefore, the velocity of the
material points within the transmitter bar is obtained by
differentiating, with respect to time, displacement field
uðtÞ ¼ hðz1Þ ¼ hðx� ctÞ as:

_u ¼ dh

dz1

@z1
@t
¼ �ch0 ¼ �cet ðEq A:6Þ

The strain rate in the specimen is next calculated as:

_e ¼
_uI=S � _uS=T
� �

lS
; ðEq A:7Þ

where ls is the instantaneous length of the specimen and
subscripts I/S and S/T are used to, respectively, denote the
velocities of the incident bar/specimen, Eq A.5 and the speci-
men/transmitter bar, Eq A.6, interfaces. Combining Eq A.5,
A.6, and A.7, the instantaneous (average) strain rate in the
specimen can be calculated from the measured time-depen-
dent strains in the incident and the transmitter bars as:

_e ¼ c

ls
ð�ei þ er þ etÞ ðEq A:8Þ

The corresponding strain in the specimen can be obtained by
integrating over time the specimen strain rate.

To determine the axial stress in the specimen, the forces in
the incident and transmitter bars are first determined. Since the
two bars are deformed elastically, the corresponding forces are
defined as:

FI ¼ AIEIðei þ erÞ ðEq A:9Þ

FT ¼ ATETet ðEq A:10Þ

where A and E are, respectively, used to denote the cross-
sectional area and the Young�s modulus of the incident (I)
and the transmitter (T) bars.

The SHPB analysis presented here is based on the following
two assumptions:

(a) after some initial ringing, the specimen is deformed uni-
formly. This assumption was already used in the case of
Eq A.7; and

(b) the specimen is in the state of dynamic equilibrium, i.e.,
the forces acting at the I/S and the S/T interfaces are
equal.

Under the conditions AI = AT and EI = ET, this assumption
via Eq A.9 and A.10 yields:

et ¼ er þ ei ðEq A:11Þ

Substituting Eq A.11 into Eq A.8 yields:

_e ¼ 2cer
ls

ðEq A:12Þ

suggesting that the specimen strain rate can be determined
solely from the measured strains associated with the reflected
wave within the incident bar.

The corresponding stress in the specimen is then calculated
by dividing the force in the sample by the sample cross-
sectional area as:

rðtÞ ¼ ATETet
As

ðEq A:13Þ

Equation A.13 was obtained using Eq A.10. The same
could be done using Eq A.11 or a mean of the Eq A.11 and
A.12.
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